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LETTER TO THE EDITOR 

On the storage capacity of neural networks with sign- 
constrained weights 

Colin Campbell and Andrew Robinson 
Department of Engineering Mathematics. Bristol University, Queen's Building. Uni- 
versity Walk, Bristol BS8 ITR, UK 

Received 26 October 1990 

Abstract. We derive the maximal storage capacity theorem for neural networks 
with sign-constrained weights using a simple geometrical argument and mention its 
implications for multi-layered networks with sign-comtrained weights. 

The properties of neural networks with sign-constrained weights have recently been 
investigated in detail. Both the dynamics [1,2] and storage capacity [2,3] of single 
layer perceptron networks has  been studied in the presence of sign constraints on the 
weights and learning rules have been considered for both single-layered and multi- 
layered networks with weight-sign constraints [4,5]. For a set of weights Wij the 
weight-sign constraints can be enforced by introducing a matrix gij with components 
*ti and performing iearning in the presence o i t h e  constraints: 

wijgij 2 0.  (1) 

There are several motivations for considering neural networks with sign- 
constrained weights. They offer a mechanism for distinguishing recognition from non- 
recognition i6j. Ais0 weight-sign constraints enforce a synaptic specificity (excitatory 
or inhibitory) at each synapse [7]. 

In the presence of weight-sign constraints the storage capacity is halved, this being 
independent of the weight-sign bias [3]. This interesting result was derived using 
the replica argument of Gardner and has since been extended by several authors [8- 
lo]. In this letter we point out that this result emerges very straightforwardly from 
a geometrical argument based on a method originally formulated by Wendel [ I l l ,  
Cover [12] and others. Not only is this argument much simpler but it also gives a 
geometrical insight into the result. 

Suppose we consider a single-layered network storing p random input vectors, 4; 
( p  = 1, , , , p ; j  = 1, . . , N )  each with a randomly assigned target value of 1 or -1 (at  a 
particular output node, i). For a linearly separable problem these target values can 
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learning rule is a procedure for finding a set of weights Wj such that E, Wj# > 0 for 
every point with target output 1 and cj Wj@ < 0 for target -1. Thus the weight 
vector Wj is normal t o  a hyperplane (given by hTWj+j  = 0 for zero threshold) which 
dichotomizes or divides the space into points with target 1 and those with target -1. 
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For neural networks wi th  sign-constrained weights the weight vector normal to  a 
hyperplane cannot assume any orientation but only those orientations compatible with 
the constraints in (1). Thus if a weight vector normal to a hyperplane is an allowed 
solution, the corresponding weight vector projecting in the opposite direction would 
not be allowed. In particular we note that a hyperplane induces one dichotomy of 
one point in N dimensions for this reason (e.g. if the target value for the pattern is 1 
then it is not possible to obtain a target value of -1 for the same hyperplane without 
violating the sign constraints-this is in contrast to unconstrained weights where both 
orientations of the hyperplane are allowed). 

For neural networks with sign-constrained weights storing random unbiased and 
uncorrelated pattern vectors, it is possible to count the number of ways in which a 
hyperplane can dichotomise p points in N dimensions, i.e. C(p, N ) .  We count hyper- 
planes which induce the same dichotomy 2s one and will call such sets of hyperplanes 
equrwalent. As for networks with unconstrained weights [ll, 121 it can be shown that 
this quantity satisfies the recurrence relation C(p+ 1,  N) = C(p, N )  t C(p, N - 1). To 
understand this relation we consider a space of p points in N dimensions (which we 
denote P )  and consider the effect of adding an extra point (which we label z ) .  Hyper- 
planes which induce a dichotomy of P are of two types: (i) they will only give one sign 
for the target value at z (we label these hyperplanes HI); (ii) they may give either sign 
for the target value at  z (we label these H,). H a  consists of a family of hyperplanes, 
equivalent in P ,  which can give either sign for the point at  z and hence must include 
one hyperplane (labelled H,) which includes the point z. If we take the vector 4;'' 
(the coordinates of z )  and project the points in P into a subspace normal to this 
vector then Ho induces a dichotomy of this subspace. The C(p, N - 1) dichotomies of 
this subspace is equal to the number of dichotomies induced by the hyperplanes H ,  
(since each set of P-equivalent hyperplanes has one H ,  dichotomizing this subspace). 
The recurrence relation then follows by observing that there are C(p, N) dichotomies 
of P ,  and P-equivalent hyperplanes belonging to H a  induce two dichotomies when z is 
included. Thus, if C, is the number of dichotomies induced by P-equivalent H ,  hyper- 
planes and C, the number induced by H ,  hyperplanes then C(p+ 1,  N )  = ZC, + C,; 
C(p, N )  = C, + C, and C, = C(p, N - 1) so C(p t 1,  N )  = C(p, N )  + C(p, N - 1) .  

This recurrence relation can be solved to give: 

Furthermore, as argued above, the orientation of the hyperplanes (imposed by (1))  
gives C(1, N )  = 1 for N 2 1 and 0 otherwise. 

Following Cover [lZ] we note that C(p, N) /2P is the probability of finding a weight 
set solution which gives the correct output for each input (since is the number 
of divisions of p points into two subsets). This probability passes through a well 
defined threshold [12] at the maximal storage capacity of the network. If we define 
this threshold as the condition that the probability of finding a solution is 4,  then from 
(2) we easily find that the maximal storage capacity is p = N .  This is half the capacity 
of networks with unconstrained weights. Furthermore since C(p, N) does not depend 
on the particular weight sign bias this maximal storage capacity is unaffected by the 
distribution of weight-signs imposed (i.e. whether the weights are all constrained to 
be positive, negative or a mixture of the two). 

I t  is also possible to extend these arguments [13] t o  multi-layered networks with 
sign constraints for the weights in each layer [5]. As one may expect, compared with 
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networks with unconstrained weights, the imposition of weight-sign constraints leads 
to a doubling of the lower bound on the number of nodes required in each layer to 
achieve an arbitrary dichotomy of p points. 
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